|
ODIN
|
Classes | |
| class | ComplexData< N_rank > |
| class | Converter |
| struct | correlationResult |
| struct | fmriResult |
| class | Data< T, N_rank > |
| class | FileIO |
| class | FileFormat |
| struct | FileReadOpts |
| struct | FileWriteOpts |
| class | FilterChain |
| struct | fitpar |
| class | ModelFunction |
| class | FunctionFitInterface |
| class | FunctionFitDerivative |
| struct | ExponentialFunction |
| struct | ExponentialFunctionWithOffset |
| struct | GaussianFunction |
| struct | SinusFunction |
| struct | GammaVariateFunction |
| struct | PolynomialFunction< N_rank > |
| struct | LinearFunction |
| class | DownhillSimplex |
| class | FunctionFitDownhillSimplex |
| struct | GriddingPoint< N_rank > |
| class | Gridding< T, N_rank > |
| class | CoordTransformation< T, N_rank, OnPixelRot > |
| class | Image |
| class | ImageSet |
| class | Integrand |
| class | FunctionIntegral |
| struct | statisticResult |
| class | Step< T > |
| class | StepFactory< T > |
Enumerations | |
| enum | dataDim |
Functions | |
| template<typename T , int N_rank> | |
| correlationResult | correlation (const Array< T, N_rank > &x, const Array< T, N_rank > &y) |
| template<typename T , int N_rank> | |
| correlationResult | kendall (const Array< T, N_rank > &x, const Array< T, N_rank > &y) |
| fmriResult | fmri_eval (const Data< float, 1 > &timecourse, const Data< float, 1 > &designvec) |
| template<int N_rank> | |
| Array< float, N_rank > | polyniomial_fit (const Array< float, N_rank > &value_map, const Array< float, N_rank > &reliability_map, unsigned int polynom_order, float kernel_size, bool only_zero_reliability=false) |
| Data< float, 1 > | solve_linear (const Data< float, 2 > &A, const Data< float, 1 > &b, float sv_truncation=0.0) |
| ComplexData< 1 > | solve_linear (const ComplexData< 2 > &A, const ComplexData< 1 > &b, float sv_truncation=0.0) |
| Data< float, 1 > | eigenvalues (const Data< float, 2 > &A) |
| template<typename T , int N_rank> | |
| statisticResult | statistics (const Array< T, N_rank > &ensemble, const Array< T, N_rank > *mask=0) |
| template<typename T , int N_rank> | |
| T | median (const Array< T, N_rank > &ensemble, const Array< T, N_rank > *mask=0) |
| template<typename T , int N_rank> | |
| T | weightmean (const Array< T, N_rank > &ensemble, const Array< float, N_rank > &weight) |
| Data< float, 1 > | unwrap_phase (const Data< float, 1 > &phase, int startindex=0) |
| template<typename T > | |
| Array< T, 1 > | matrix_product (const Array< T, 2 > &matrix, const Array< T, 1 > &vector) |
| template<typename T > | |
| Array< T, 2 > | matrix_product (const Array< T, 2 > &matrix1, const Array< T, 2 > &matrix2) |
| template<typename T > | |
| Array< T, 1 > | vector_product (const Array< T, 1 > &u, const Array< T, 1 > &v) |
| template<typename T , int N_rank> | |
| bool | operator== (const TinyVector< T, N_rank > &t1, const TinyVector< T, N_rank > &t2) |
| template<typename T , int N_rank> | |
| bool | operator!= (const TinyVector< T, N_rank > &t1, const TinyVector< T, N_rank > &t2) |
| template<typename T , int N_rows, int N_columns> | |
| TinyVector< T, N_rows > | operator* (const TinyMatrix< T, N_rows, N_columns > &matrix, const TinyVector< T, N_columns > &vector) |
| template<typename T , int N_rank> | |
| bool | same_shape (const Array< T, N_rank > &a1, const Array< T, N_rank > &a2, const TinyVector< int, N_rank > &dimmask=1) |
| template<int N_rank> | |
| bool | on_grid (const TinyVector< int, 3 > &shape, const TinyVector< int, 3 > &index) |
| template<typename T > | |
| bool | check_range (T &val, T min, T max) |
| template<typename T , int N_rank> | |
| void | clip_max (Data< T, N_rank > &data, T val) |
| template<typename T , int N_rank> | |
| void | clip_min (Data< T, N_rank > &data, T val) |
| bool | PolynomialFunction< N_rank >::fit (const Array< float, 1 > &yvals, const Array< float, 1 > &ysigma, const Array< float, 1 > &xvals) |
| Array< float, 1 > | PolynomialFunction< N_rank >::get_function (const Array< float, 1 > &xvals) const |
| Array< float, N_rank > | Gridding< T, N_rank >::init (const TinyVector< int, N_rank > &dst_shape, const TinyVector< float, N_rank > &dst_extent, const STD_vector< GriddingPoint< N_rank > > &src_coords, const LDRfilter &kernel, float kernel_diameter) |
| template<int N_rank_in> | |
| Array< T, N_rank > | Gridding< T, N_rank >::operator() (const Array< T, N_rank_in > &src, unsigned int offset=0) const |
| CoordTransformation< T, N_rank, OnPixelRot >::CoordTransformation (const TinyVector< int, N_rank > &shape, const TinyMatrix< float, N_rank, N_rank > &rotation, const TinyVector< float, N_rank > &offset, float kernel_size=2.5) | |
| Array< T, N_rank > | CoordTransformation< T, N_rank, OnPixelRot >::operator() (const Array< T, N_rank > &A) const |
ODIN data processing framework (odindata library) Input/Output of medical image data (odindata library)
| enum dataDim |
| bool check_range | ( | T & | val, |
| T | min, | ||
| T | max | ||
| ) |
| void clip_max | ( | Data< T, N_rank > & | data, |
| T | val | ||
| ) |
| void clip_min | ( | Data< T, N_rank > & | data, |
| T | val | ||
| ) |
| CoordTransformation< T, N_rank, OnPixelRot >::CoordTransformation | ( | const TinyVector< int, N_rank > & | shape, |
| const TinyMatrix< float, N_rank, N_rank > & | rotation, | ||
| const TinyVector< float, N_rank > & | offset, | ||
| float | kernel_size = 2.5 |
||
| ) |
Initializes a transformation of an array with shape 'shape' to new coordinates using a gridding algorithm. New coordinates (...z',y',x') are obtained by multiplying (...z,y,x) with 'rotation' and adding 'offset'. Origin is the center of the data set.
Definition at line 251 of file gridding.h.
| correlationResult correlation | ( | const Array< T, N_rank > & | x, |
| const Array< T, N_rank > & | y | ||
| ) |
Linear correlation between vectors 'x' and 'y'
Definition at line 61 of file correlation.h.
Computes the eigenvalues of symmetric matrix A using LAPACK (or with GSL if LAPACK is not available).
| bool PolynomialFunction< N_rank >::fit | ( | const Array< float, 1 > & | yvals, |
| const Array< float, 1 > & | ysigma, | ||
| const Array< float, 1 > & | xvals | ||
| ) |
polynomial fitting routine. Fits the function to the y-values 'yvals', and optionally the corresponding error bars 'ysigma' and x-values 'xvals'. If no error-bars are given they are all set to 1.0 and if no x-vals are given equidistant points with an increment of one are chosen, i.e. xvals(i)=i; Returns true on success.
| fmriResult fmri_eval | ( | const Data< float, 1 > & | timecourse, |
| const Data< float, 1 > & | designvec | ||
| ) |
Returns an fMRI analysis of 'timecourse' using 'designvec'
| Array< float, 1 > PolynomialFunction< N_rank >::get_function | ( | const Array< float, 1 > & | xvals | ) | const |
| Array< float, N_rank > Gridding< T, N_rank >::init | ( | const TinyVector< int, N_rank > & | dst_shape, |
| const TinyVector< float, N_rank > & | dst_extent, | ||
| const STD_vector< GriddingPoint< N_rank > > & | src_coords, | ||
| const LDRfilter & | kernel, | ||
| float | kernel_diameter | ||
| ) |
Initializes a gridding object to perform a gridding operation with the following parameters:
Definition at line 96 of file gridding.h.
| correlationResult kendall | ( | const Array< T, N_rank > & | x, |
| const Array< T, N_rank > & | y | ||
| ) |
Kendall's rank-correlation between vectors 'x' and 'y' re-implemented from NRC, section 14.6
Definition at line 106 of file correlation.h.
| Array<T,1> matrix_product | ( | const Array< T, 2 > & | matrix, |
| const Array< T, 1 > & | vector | ||
| ) |
| Array<T,2> matrix_product | ( | const Array< T, 2 > & | matrix1, |
| const Array< T, 2 > & | matrix2 | ||
| ) |
| T median | ( | const Array< T, N_rank > & | ensemble, |
| const Array< T, N_rank > * | mask = 0 |
||
| ) |
Returns the median of 'ensemble'.
Definition at line 146 of file statistics.h.
| bool on_grid | ( | const TinyVector< int, 3 > & | shape, |
| const TinyVector< int, 3 > & | index | ||
| ) |
| bool operator!= | ( | const TinyVector< T, N_rank > & | t1, |
| const TinyVector< T, N_rank > & | t2 | ||
| ) |
| Array< T, N_rank > CoordTransformation< T, N_rank, OnPixelRot >::operator() | ( | const Array< T, N_rank > & | A | ) | const |
Transforms 'A' to new coordinates and returns the result
Definition at line 283 of file gridding.h.
| Array< T, N_rank > Gridding< T, N_rank >::operator() | ( | const Array< T, N_rank_in > & | src, |
| unsigned int | offset = 0 |
||
| ) | const |
Put input array 'src' on the grid by stepping linearly through the inidices. Gridding will start at the linear index 'offset' of the 'src_coords' specified in the init() function. Returns gridded array.
Definition at line 194 of file gridding.h.
| TinyVector<T,N_rows> operator* | ( | const TinyMatrix< T, N_rows, N_columns > & | matrix, |
| const TinyVector< T, N_columns > & | vector | ||
| ) |
| bool operator== | ( | const TinyVector< T, N_rank > & | t1, |
| const TinyVector< T, N_rank > & | t2 | ||
| ) |
| Array<float,N_rank> polyniomial_fit | ( | const Array< float, N_rank > & | value_map, |
| const Array< float, N_rank > & | reliability_map, | ||
| unsigned int | polynom_order, | ||
| float | kernel_size, | ||
| bool | only_zero_reliability = false |
||
| ) |
Fits an N_rank-dimensional polynomial of order 'polynom_order' to each point of the array using the values of its neighbours regarding their reliability (i.e. their relative weight for the fit). Parameters are:
This function returns the fitted array
| bool same_shape | ( | const Array< T, N_rank > & | a1, |
| const Array< T, N_rank > & | a2, | ||
| const TinyVector< int, N_rank > & | dimmask = 1 |
||
| ) |
| ComplexData<1> solve_linear | ( | const ComplexData< 2 > & | A, |
| const ComplexData< 1 > & | b, | ||
| float | sv_truncation = 0.0 |
||
| ) |
Solves the complex linear system A x = b and returns x. All singular values less than sv_truncation * max_singular_value will be set to zero. The algorithm uses the singular value decomposition from LAPACK (or from GSL if LAPACK is not available).
| Data<float,1> solve_linear | ( | const Data< float, 2 > & | A, |
| const Data< float, 1 > & | b, | ||
| float | sv_truncation = 0.0 |
||
| ) |
Solves the linear system A x = b and returns x. All singular values less than sv_truncation * max_singular_value will be set to zero. The algorithm uses the singular value decomposition from LAPACK (or from GSL if LAPACK is not available).
| statisticResult statistics | ( | const Array< T, N_rank > & | ensemble, |
| const Array< T, N_rank > * | mask = 0 |
||
| ) |
Returns a statistical description of 'ensemble'. If mask is non-zero, only values with mask!=0 are considered.
Definition at line 79 of file statistics.h.
unwrap phase in one dimension, starting at position 'startindex'
| Array<T,1> vector_product | ( | const Array< T, 1 > & | u, |
| const Array< T, 1 > & | v | ||
| ) |
| T weightmean | ( | const Array< T, N_rank > & | ensemble, |
| const Array< float, N_rank > & | weight | ||
| ) |
Returns the weighted mean of 'ensemble' using 'weight' for the weighting.
Definition at line 180 of file statistics.h.