ODIN
|
Classes | |
class | ComplexData< N_rank > |
class | Converter |
struct | correlationResult |
struct | fmriResult |
class | Data< T, N_rank > |
class | FileIO |
class | FileFormat |
struct | FileReadOpts |
struct | FileWriteOpts |
class | FilterChain |
struct | fitpar |
class | ModelFunction |
class | FunctionFitInterface |
class | FunctionFitDerivative |
struct | ExponentialFunction |
struct | ExponentialFunctionWithOffset |
struct | GaussianFunction |
struct | SinusFunction |
struct | GammaVariateFunction |
struct | PolynomialFunction< N_rank > |
struct | LinearFunction |
class | DownhillSimplex |
class | FunctionFitDownhillSimplex |
struct | GriddingPoint< N_rank > |
class | Gridding< T, N_rank > |
class | CoordTransformation< T, N_rank, OnPixelRot > |
class | Image |
class | ImageSet |
class | Integrand |
class | FunctionIntegral |
struct | statisticResult |
class | Step< T > |
class | StepFactory< T > |
Enumerations | |
enum | dataDim |
Functions | |
template<typename T , int N_rank> | |
correlationResult | correlation (const Array< T, N_rank > &x, const Array< T, N_rank > &y) |
template<typename T , int N_rank> | |
correlationResult | kendall (const Array< T, N_rank > &x, const Array< T, N_rank > &y) |
fmriResult | fmri_eval (const Data< float, 1 > &timecourse, const Data< float, 1 > &designvec) |
template<int N_rank> | |
Array< float, N_rank > | polyniomial_fit (const Array< float, N_rank > &value_map, const Array< float, N_rank > &reliability_map, unsigned int polynom_order, float kernel_size, bool only_zero_reliability=false) |
Data< float, 1 > | solve_linear (const Data< float, 2 > &A, const Data< float, 1 > &b, float sv_truncation=0.0) |
ComplexData< 1 > | solve_linear (const ComplexData< 2 > &A, const ComplexData< 1 > &b, float sv_truncation=0.0) |
Data< float, 1 > | eigenvalues (const Data< float, 2 > &A) |
template<typename T , int N_rank> | |
statisticResult | statistics (const Array< T, N_rank > &ensemble, const Array< T, N_rank > *mask=0) |
template<typename T , int N_rank> | |
T | median (const Array< T, N_rank > &ensemble, const Array< T, N_rank > *mask=0) |
template<typename T , int N_rank> | |
T | weightmean (const Array< T, N_rank > &ensemble, const Array< float, N_rank > &weight) |
Data< float, 1 > | unwrap_phase (const Data< float, 1 > &phase, int startindex=0) |
template<typename T > | |
Array< T, 1 > | matrix_product (const Array< T, 2 > &matrix, const Array< T, 1 > &vector) |
template<typename T > | |
Array< T, 2 > | matrix_product (const Array< T, 2 > &matrix1, const Array< T, 2 > &matrix2) |
template<typename T > | |
Array< T, 1 > | vector_product (const Array< T, 1 > &u, const Array< T, 1 > &v) |
template<typename T , int N_rank> | |
bool | operator== (const TinyVector< T, N_rank > &t1, const TinyVector< T, N_rank > &t2) |
template<typename T , int N_rank> | |
bool | operator!= (const TinyVector< T, N_rank > &t1, const TinyVector< T, N_rank > &t2) |
template<typename T , int N_rows, int N_columns> | |
TinyVector< T, N_rows > | operator* (const TinyMatrix< T, N_rows, N_columns > &matrix, const TinyVector< T, N_columns > &vector) |
template<typename T , int N_rank> | |
bool | same_shape (const Array< T, N_rank > &a1, const Array< T, N_rank > &a2, const TinyVector< int, N_rank > &dimmask=1) |
template<int N_rank> | |
bool | on_grid (const TinyVector< int, 3 > &shape, const TinyVector< int, 3 > &index) |
template<typename T > | |
bool | check_range (T &val, T min, T max) |
template<typename T , int N_rank> | |
void | clip_max (Data< T, N_rank > &data, T val) |
template<typename T , int N_rank> | |
void | clip_min (Data< T, N_rank > &data, T val) |
bool | PolynomialFunction< N_rank >::fit (const Array< float, 1 > &yvals, const Array< float, 1 > &ysigma, const Array< float, 1 > &xvals) |
Array< float, 1 > | PolynomialFunction< N_rank >::get_function (const Array< float, 1 > &xvals) const |
Array< float, N_rank > | Gridding< T, N_rank >::init (const TinyVector< int, N_rank > &dst_shape, const TinyVector< float, N_rank > &dst_extent, const STD_vector< GriddingPoint< N_rank > > &src_coords, const LDRfilter &kernel, float kernel_diameter) |
template<int N_rank_in> | |
Array< T, N_rank > | Gridding< T, N_rank >::operator() (const Array< T, N_rank_in > &src, unsigned int offset=0) const |
CoordTransformation< T, N_rank, OnPixelRot >::CoordTransformation (const TinyVector< int, N_rank > &shape, const TinyMatrix< float, N_rank, N_rank > &rotation, const TinyVector< float, N_rank > &offset, float kernel_size=2.5) | |
Array< T, N_rank > | CoordTransformation< T, N_rank, OnPixelRot >::operator() (const Array< T, N_rank > &A) const |
ODIN data processing framework (odindata library) Input/Output of medical image data (odindata library)
enum dataDim |
bool check_range | ( | T & | val, |
T | min, | ||
T | max | ||
) |
void clip_max | ( | Data< T, N_rank > & | data, |
T | val | ||
) |
void clip_min | ( | Data< T, N_rank > & | data, |
T | val | ||
) |
CoordTransformation< T, N_rank, OnPixelRot >::CoordTransformation | ( | const TinyVector< int, N_rank > & | shape, |
const TinyMatrix< float, N_rank, N_rank > & | rotation, | ||
const TinyVector< float, N_rank > & | offset, | ||
float | kernel_size = 2.5 |
||
) |
Initializes a transformation of an array with shape 'shape' to new coordinates using a gridding algorithm. New coordinates (...z',y',x') are obtained by multiplying (...z,y,x) with 'rotation' and adding 'offset'. Origin is the center of the data set.
Definition at line 251 of file gridding.h.
correlationResult correlation | ( | const Array< T, N_rank > & | x, |
const Array< T, N_rank > & | y | ||
) |
Linear correlation between vectors 'x' and 'y'
Definition at line 61 of file correlation.h.
Computes the eigenvalues of symmetric matrix A using LAPACK (or with GSL if LAPACK is not available).
bool PolynomialFunction< N_rank >::fit | ( | const Array< float, 1 > & | yvals, |
const Array< float, 1 > & | ysigma, | ||
const Array< float, 1 > & | xvals | ||
) |
polynomial fitting routine. Fits the function to the y-values 'yvals', and optionally the corresponding error bars 'ysigma' and x-values 'xvals'. If no error-bars are given they are all set to 1.0 and if no x-vals are given equidistant points with an increment of one are chosen, i.e. xvals(i)=i; Returns true on success.
fmriResult fmri_eval | ( | const Data< float, 1 > & | timecourse, |
const Data< float, 1 > & | designvec | ||
) |
Returns an fMRI analysis of 'timecourse' using 'designvec'
Array< float, 1 > PolynomialFunction< N_rank >::get_function | ( | const Array< float, 1 > & | xvals | ) | const |
Array< float, N_rank > Gridding< T, N_rank >::init | ( | const TinyVector< int, N_rank > & | dst_shape, |
const TinyVector< float, N_rank > & | dst_extent, | ||
const STD_vector< GriddingPoint< N_rank > > & | src_coords, | ||
const LDRfilter & | kernel, | ||
float | kernel_diameter | ||
) |
Initializes a gridding object to perform a gridding operation with the following parameters:
Definition at line 96 of file gridding.h.
correlationResult kendall | ( | const Array< T, N_rank > & | x, |
const Array< T, N_rank > & | y | ||
) |
Kendall's rank-correlation between vectors 'x' and 'y' re-implemented from NRC, section 14.6
Definition at line 106 of file correlation.h.
Array<T,1> matrix_product | ( | const Array< T, 2 > & | matrix, |
const Array< T, 1 > & | vector | ||
) |
Array<T,2> matrix_product | ( | const Array< T, 2 > & | matrix1, |
const Array< T, 2 > & | matrix2 | ||
) |
T median | ( | const Array< T, N_rank > & | ensemble, |
const Array< T, N_rank > * | mask = 0 |
||
) |
Returns the median of 'ensemble'.
Definition at line 146 of file statistics.h.
bool on_grid | ( | const TinyVector< int, 3 > & | shape, |
const TinyVector< int, 3 > & | index | ||
) |
bool operator!= | ( | const TinyVector< T, N_rank > & | t1, |
const TinyVector< T, N_rank > & | t2 | ||
) |
Array< T, N_rank > CoordTransformation< T, N_rank, OnPixelRot >::operator() | ( | const Array< T, N_rank > & | A | ) | const |
Transforms 'A' to new coordinates and returns the result
Definition at line 283 of file gridding.h.
Array< T, N_rank > Gridding< T, N_rank >::operator() | ( | const Array< T, N_rank_in > & | src, |
unsigned int | offset = 0 |
||
) | const |
Put input array 'src' on the grid by stepping linearly through the inidices. Gridding will start at the linear index 'offset' of the 'src_coords' specified in the init() function. Returns gridded array.
Definition at line 194 of file gridding.h.
TinyVector<T,N_rows> operator* | ( | const TinyMatrix< T, N_rows, N_columns > & | matrix, |
const TinyVector< T, N_columns > & | vector | ||
) |
bool operator== | ( | const TinyVector< T, N_rank > & | t1, |
const TinyVector< T, N_rank > & | t2 | ||
) |
Array<float,N_rank> polyniomial_fit | ( | const Array< float, N_rank > & | value_map, |
const Array< float, N_rank > & | reliability_map, | ||
unsigned int | polynom_order, | ||
float | kernel_size, | ||
bool | only_zero_reliability = false |
||
) |
Fits an N_rank-dimensional polynomial of order 'polynom_order' to each point of the array using the values of its neighbours regarding their reliability (i.e. their relative weight for the fit). Parameters are:
This function returns the fitted array
bool same_shape | ( | const Array< T, N_rank > & | a1, |
const Array< T, N_rank > & | a2, | ||
const TinyVector< int, N_rank > & | dimmask = 1 |
||
) |
ComplexData<1> solve_linear | ( | const ComplexData< 2 > & | A, |
const ComplexData< 1 > & | b, | ||
float | sv_truncation = 0.0 |
||
) |
Solves the complex linear system A x = b and returns x. All singular values less than sv_truncation * max_singular_value will be set to zero. The algorithm uses the singular value decomposition from LAPACK (or from GSL if LAPACK is not available).
Data<float,1> solve_linear | ( | const Data< float, 2 > & | A, |
const Data< float, 1 > & | b, | ||
float | sv_truncation = 0.0 |
||
) |
Solves the linear system A x = b and returns x. All singular values less than sv_truncation * max_singular_value will be set to zero. The algorithm uses the singular value decomposition from LAPACK (or from GSL if LAPACK is not available).
statisticResult statistics | ( | const Array< T, N_rank > & | ensemble, |
const Array< T, N_rank > * | mask = 0 |
||
) |
Returns a statistical description of 'ensemble'. If mask is non-zero, only values with mask!=0 are considered.
Definition at line 79 of file statistics.h.
unwrap phase in one dimension, starting at position 'startindex'
Array<T,1> vector_product | ( | const Array< T, 1 > & | u, |
const Array< T, 1 > & | v | ||
) |
T weightmean | ( | const Array< T, N_rank > & | ensemble, |
const Array< float, N_rank > & | weight | ||
) |
Returns the weighted mean of 'ensemble' using 'weight' for the weighting.
Definition at line 180 of file statistics.h.