#include <fitting.h>
|
| FunctionFitDerivative () |
|
| ~FunctionFitDerivative () |
|
bool | init (ModelFunction &model_func, unsigned int nvals) |
|
bool | fit (const Array< float, 1 > &yvals, const Array< float, 1 > &ysigma=defaultArray, const Array< float, 1 > &xvals=defaultArray, unsigned int max_iterations=DEFAULT_MAX_ITER, double tolerance=DEFAULT_TOLERANCE) |
|
Class which is used for derivative-based fitting of functions.
Definition at line 159 of file fitting.h.
◆ FunctionFitDerivative()
FunctionFitDerivative::FunctionFitDerivative |
( |
| ) |
|
|
inline |
Constructs uninitialized function fit
Definition at line 166 of file fitting.h.
◆ ~FunctionFitDerivative()
FunctionFitDerivative::~FunctionFitDerivative |
( |
| ) |
|
◆ fit()
bool FunctionFitDerivative::fit |
( |
const Array< float, 1 > & |
yvals, |
|
|
const Array< float, 1 > & |
ysigma = defaultArray , |
|
|
const Array< float, 1 > & |
xvals = defaultArray , |
|
|
unsigned int |
max_iterations = DEFAULT_MAX_ITER , |
|
|
double |
tolerance = DEFAULT_TOLERANCE |
|
) |
| |
|
virtual |
The fitting routine that takes the starting values from the model function, y-values 'yvals', and optionally the corresponding y-error bars 'ysigma' and x-vals 'xvals'. If no error-bars are given, they are all set to 0.1 and if no x-vals are given equidistant points with an increment of one are chosen, i.e. xvals(i)=i; A maximum of 'max_iterations' iterations and the given 'tolerance' is used during the fit. Returns true on success.
Implements FunctionFitInterface.
◆ init()
bool FunctionFitDerivative::init |
( |
ModelFunction & |
model_func, |
|
|
unsigned int |
nvals |
|
) |
| |
|
virtual |
Prepare a non-linear least-square fit of function 'model_func' for 'nvals' values
Implements FunctionFitInterface.
The documentation for this class was generated from the following file: