
Short Tutorial for ODIN, the Object-oriented

Development Interface for NMR

Thies H. Jochimsen

October 15, 2021

Contents

1 Sequence Programming 2

1.1 Introduction . 2
1.2 The MR sequence is a C++ class . 4

1.3 Sequence Parameters and Their Initialization 5

1.4 Designing the Sequence . 5
1.4.1 RF Pulses . 5

1.4.2 Gradient Pulses . 6

1.4.3 Data Acquisition . 6
1.4.4 Sequence Containers and Delays . 7

1.4.5 Sequence Loops . 8
1.5 (Re)Calculating Sequence Timings . 8

1.6 Image Reconstruction . 9

Index 10

List of Abbreviations 11

1 Sequence Programming 2

1 Sequence Programming

1.1 Introduction

In this step-by-step tutorial, we will discover how to program a magnetic resonance (MR)

sequence with ODIN. As a representative example, a fast spin-echo (FSE) sequence (also
termed turbo spin echo or RARE sequence) will be implemented in this tutorial to introduce

ODIN’s sequence programming interface and to highlight the benefits of using a truly object-

oriented approach for sequence development. To fully appreciate this tutorial, you should
be familiar with the concepts of object-oriented programming (OOP) (data encapsulation,

inheritance, polymorphism), and in particular, with OOP programming in C++. Before going

into detail, here is the full source code of the FSE sequence:

1 #include <odinseq/seqall.h>

2

3 class METHOD_CLASS : public SeqMethod {

4

5 LDRint Shots;

6

7 SeqPulsar exc;

8 SeqPulsar refoc;

9 SeqGradPhaseEnc pe1,pe2;

10 SeqGradConstPulse spoiler;

11 SeqAcqRead read;

12 SeqAcqDeph deph;

13 SeqObjList echopart;

14 SeqObjList prep;

15 SeqObjList oneshot;

16 SeqDelay echodelay;

17 SeqDelay prepdelay;

18 SeqDelay relaxdelay;

19 SeqObjLoop echoloop;

20 SeqObjLoop shotloop;

21

22 public:

23 METHOD_CLASS(const STD_string& label) : SeqMethod(label) {}

24

25 void method_pars_init() {

26

27 Shots=4;

28 append_parameter(Shots,"Shots");

29

30 }

31

32 void method_seq_init() {

33

34 exc=SeqPulsarSinc("exc",geometryInfo->get_sliceThickness(),

35 true,2.0,commonPars->get_FlipAngle());

36

37 refoc=exc;

38 refoc.set_label("refoc");

39 refoc.set_rephased(false);

40 refoc.set_flipangle(180.0);

41 refoc.set_phase(90.0);

1.1 Introduction 3

42 refoc.set_pulse_type(refocusing);

43

44

45 pe1=SeqGradPhaseEnc("pe1",commonPars->get_MatrixSize(phaseDirection),

46 geometryInfo->get_FOV(phaseDirection),

47 phaseDirection,0.25*systemInfo->get_max_grad(),

48 centerOutEncoding,interleavedSegmented,Shots);

49

50 pe2=pe1;

51 pe2.set_label("pe2");

52 pe2.invert_strength();

53

54

55 spoiler=SeqGradConstPulse("spoiler",sliceDirection,

56 0.5*systemInfo->get_max_grad(),1.0);

57

58

59 read=SeqAcqRead("read",commonPars->get_AcqSweepWidth(),

60 commonPars->get_MatrixSize(readDirection),

61 geometryInfo->get_FOV(readDirection),readDirection);

62

63 deph=SeqAcqDeph("deph",read,spinEcho);

64

65

66 echodelay.set_label("echodelay");

67

68 echopart= refoc + spoiler + echodelay + pe1 + read + pe2 + echodelay + spoiler;

69

70

71 prepdelay.set_label("prepdelay");

72

73 prep= exc + prepdelay + spoiler/deph;

74

75

76 relaxdelay.set_label("relaxdelay");

77

78 oneshot= prep + echoloop(echopart)[pe1][pe2];

79

80 set_sequence(

81 shotloop(oneshot + relaxdelay)[pe1.get_reorder_vector()][pe2.get_reorder_vector()]

82);

83 }

84

85

86 void method_rels() {

87

88 float minTEprep = 2.0* (exc.get_duration() - exc.get_magnetic_center()

89 + (spoiler/deph).get_duration()

90 + refoc.get_magnetic_center());

91

92 float minTEecho=echopart.get_duration();

93

94 float minTE=minTEprep;

1.2 The MR sequence is a C++ class 4

95 if(minTEecho>minTE) minTE=minTEecho;

96

97 commonPars->set_EchoTime(minTE,noedit);

98 prepdelay.set_duration(0.5*(minTE-minTEprep));

99 echodelay.set_duration(0.5*(minTE-minTEecho));

100

101 if(oneshot.get_duration()>commonPars->get_RepetitionTime())

102 commonPars->set_RepetitionTime(oneshot.get_duration());

103 relaxdelay=commonPars->get_RepetitionTime()-oneshot.get_duration();

104 }

105

106

107 void method_pars_set() {

108 read.set_reco_vector(line,pe1);

109 }

110

111 };

112

113 ODINMETHOD_ENTRY_POINT

This code can be compiled by saving it to a file with extension .cpp and open it in the

ODIN user interface by File→Open.

1.2 The MR sequence is a C++ class

Because each MR sequence is an entity with local data (sequence parameters, sequence

objects) and functions to operate on this data (initialization, execution, simulation), it is obvi-
ous to bundle this structure in a C++ class. This is exactly how sequences are implemented

in ODIN: You create a class that is derived from the base class of all sequences, SeqMethod.
This is done in line 3. Please note that instead of using the term sequence, the term method

is often used instead within ODIN to emphasize that the sequence as whole is addressed

instead of single sequence objects.
Three remarks: First, the #include statement in line 1integrates all headers necessary

for sequence programming. Second, the macro METHOD CLASS must be used as the class

label for every sequence.1 Third, the macro ODINMETHOD ENTRY POINT in line 113expands
to some extra code required by ODIN and must be at the end of each sequence file.

Next, we need a public constructor that accepts a string as a single argument and passes
this string to SeqMethod as done in line 23. This constructor is necessary to be able to create

an instance of the class while giving it a unique label which is used throughout the ODIN

framework to refer to this sequence. The wicked STD string is equivalent to std::string

for internal reasons.2

Finally, to complete our skeleton of the sequence, we must implement a bunch of virtual

functions as shown in line 25,32,86,107. The purpose of these functions is:

method pars init Initialize sequence parameters
method seq init Initialize sequence objects and create sequence layout

method rels (Re)calculate sequence timings
method pars set Final preparations before executing the sequence

1It will be replaced by a unique string each time the sequence is compiled within the ODIN user interface so that
each time it is linked into the process space, a unique symbol is available.

2Some ancient systems have none or a broken C++ standard library and no namespaces. Thus, the macros
starting with STD are used instead of std:: so that ODIN can replace them by its own implementations, if
necessary.

1.3 Sequence Parameters and Their Initialization 5

The ODIN framework will call these functions during initialization/preparation of the se-

quence. In order to realize our custom sequence, we have to implement these functions.
Hence, in the remainder of this tutorial, we will fill these functions with the appropriate code

to program our FSE sequence.

1.3 Sequence Parameters and Their Initialization

In the following, the term sequence parameters refers to properties that modify the layout,

and hence, the resolution, timing, etc. of the sequence. Examples are the echo time (TE),

the repetition time (TR) and the field of view (FOV). A number of pre-defined sequence
parameters are available within the sequence class. They can be accessed via the following

pointers and contain the specified class of parameters:

Pointer label: Pointing to type: Description:
commonPars SeqPars Common MR parameters (e.g. TE, TR)

geometryInfo Geometry Geometry parameters (e.g. FOV)

systemInfo System System settings (e.g. field strength)

Single parameters of these parameter blocks can be retrieved and modified with appropriate
get_ and set_ methods, as we will see later. We will also refer to these global objects as

proxies because the hide platform specific stuff behind a common interface. Please refer to

the online manual for a list of available member functions.
If you write a custom sequence, you probably want to be able to define and use an

extra set of parameters. As it turns out, this is pretty easy in ODIN, all you have to do is
to declare the parameter as a (private) member of your method class and tell ODIN that

this is a new sequence parameter. For example, we will need an extra parameter, Shots,

in our FSE sequence for the number of excitations for each image. Thus, we first add the
parameter as a member to our class (line 5). LDRint is the type of our new parameter

and makes Shots behave exactly like a built-in int.3 Next, we can assign a default value

to the parameter in method_pars_init (line 27). To register the parameter so that it is
recognized by ODIN, for example to display it in the graphical user interface (GUI), we must

call the function append parameter in method_pars_init of our sequence (line 28). After
compiling the method, you will see a field with the new parameter on the right-hand side of

the ODIN GUI. As we will see later, the parameter can be used exactly like a regular int in

our method code.

1.4 Designing the Sequence

In this section, we will create all the sequence objects required for our FSE sequence. The

term sequence objects refers to all basic elements of an MR sequence, such as RF pulses,
gradient pulses and periods of data acquisitions. In ODIN, these sequence objects are data

members of the sequence class. In addition, we will see how these sequence objects are

combined into sequence containers and used together with sequence loops to form the
whole sequence.

1.4.1 RF Pulses

As the FSE sequence is basically a Carr-Purcell-Meiboom-Gill (CPMG) sequence, we will

need an excitation pulse and a refocusing pulse. The excitation pulse exc is declared in
line 7. It is of type SeqPulsar because it uses the same functions as the Pulsar program to

calculate pulses. The pulse is initialized in lines 34-35by using the constructor of the spe-
cialized pulse class SeqPulsarSinc4. Several parameters are passed to the constructor:

3There are many other types emulating built-in types, such as LDRfloat and LDRdouble. Composite types are
also available, such as LDRstring, LDRcomplex and arrays. Please refer to the online manual for a complete list.

4The following goes on behind the scenes: First, a temporary (unnamed) object of type SeqPulsarSinc is cre-
ated with the given parameters. Next, the assignment operator of SeqPulsar is called. Because SeqPulsarSinc is

1.4 Designing the Sequence 6

The first assigns a label to the object created. It is convenient to use the same label as that

used in source code. The label will be used to refer to the sequence object, for example
when plotting the sequence. Next, the constructor expects the slice thickness which is sim-

ply taken from the global geometry proxy pointed to by geometryInfo. The third parameter

is set to true, to automatically add a rephasing gradient to the excitation pulse. Finally, we
specify the pulse duration (4th parameter) and the flip angle (5th parameter).

In an FSE sequence, it is usually a good idea to use the same pulse shape for excitation
and refocusing, except for the flip angle. Thus, for the refocusing pulse refoc (declared in

line 8) we make use of the assignment operator of SeqPulsar to create a copy of exc and

change only those properties which differ (lines 37-42): First, the label is changed to refoc.
Then, the rephasing gradient pulse is removed because it is not necessary for a refocusing

pulse. Next, the phase is set to 90◦(CPMG condition) and the flip angle is changed. Finally,

the pulse type is set to refocusing5.

1.4.2 Gradient Pulses

For phase encoding, i.e scanning of lines in k-space , two gradient pulses with variable

strength are required to create a linear phase prior to data acquisition and to rewind this

phase after acquisition. We could use the class SeqGradVector to achieve this, but then we
would have to calculate the gradient strengths ourselves to cover a certain FOV for a cer-

tain resolution. Since we are lazy, and ODIN provides a convenient class SeqGradPhaseEnc

to achieve just that, we will use it to declare both objects (line 9). The initialization of the

first phase encoding gradient pe1 in lines 45-48requires some explanation: After specify-

ing the label, resolution (matrix size) and FOV, the channel of the gradient pulse is set to
phaseDirection6. Next, the maximum gradient strength is set to 1/4 of that possible with

the available gradient hardware. The duration of the gradient pulse will then be calculated to

achieve the desired phase encoding. The argument centerOutEncoding specifies that in-
stead of linear encoding (scanning k-space from one edge to the other in sequential order),

the central lines are acquired first and then moving outwards from the center. Finally, the
last two arguments are used to separate the phase encoding lines into Shots interleaves

by using interleavedSegmented as the reordering scheme. We will see later how iterate

through the phase encoding interleaves and shots by sequence loops. In lines 50-52, the
phase rewinder pe2 is initialized by making it a copy of pe1 and inverting its polarity.

To suppress free-induction signal of the refocusing pulses, a pair of spoiler gradients is

required around each refocusing pulse. This fairly simple constant gradient pulse of type
SeqGradConstPulse is declared in line 10and initialized in lines 55-56with 1/2 of the maxi-

mum gradient strength and 1 ms duration.

1.4.3 Data Acquisition

To sample one line in k-space between two refocusing pulses in our FSE sequence, an
acquisition period has to be created together with a simultaneous read gradient. We could

create this composite object ourselves by using a simple acquisition of type SeqAcq and
a trapezoidal gradient SeqGradTrapez, but again, ODIN provides a convenient composite

class to achieve this, namely SeqAcqRead which is an acquisition together with a gradient

pulse of the same duration. The object read of this type is declared in line 11and initialized
in lines 59-61. As usual, the first argument to the constructor of SeqAcqRead is the object’s

label. Then, the sweep width (sampling frequency) is specified together with the matrix size

in read direction (number of sampling points) and the desired FOV. The desired gradient

derived from SeqPulsar, all data members of SeqPulsar of the temporary object are copied over to exc, thereby
initializing exc.

5This has no direct effect on the sequence time course, but makes calculation gradient moments (e.g. k-
space analysis) possible in the plotting GUI.

6This is one of the three possible channels readDirection, phaseDirection and sliceDirection which cor-
respond to the three orthogonal directions in the logical patient coordinate system, which usually differs from the
coordinate system spanned by the three gradient coils if the imaging plane is tilted.

1.4 Designing the Sequence 7

channel for the gradient is the readDirection.

This is a good place to explain the concept of Interface base classes, sometimes called
interface classes: An Interface base class is a class which provides a set of (mostly vir-

tual) member function. This class cannot be instantiated, i.e. no object of this class can be

created, but it serves as a base class to concrete implementations of this set of mem-
ber functions (the interface). For example the class SeqAcqRead implements two inter-

faces, namely SeqAcqInterface, which is the base class for all acquisition classes, and
SeqGradInterface, which is the base class for all classes with one or more gradient pulses.

In this way, all acquisition (or gradient) objects share a common interface. For instance,

the member function get acquisition start is reimplemented in each acquisition class
to return the duration from the start of the sequence object to the beginning of the actual

acquisition (this is necessary for proper timing calculations, see below). The implementa-

tion of this function can be very different, depending on the concrete acquisition class used:
SeqAcq will return the duration to trigger the digitizer, and SeqAcqRead will also consider the

duration of the gradient ramp of the read gradient. However, the programming interface
is the same in both cases which makes it easy to remember the member functions and,

more importantly, allows polymorphism: If different acquisition types should be supported

within one sequence, member functions can be called via a pointer (or reference) to type
SeqAcqInterface instead of several if-statements.

In order to start sampling at one edge of k-space in read direction, we also need a pre-

dephasing gradient pulse. Again, we could create this ourselves using a SeqGradConstPulse

object, but there is a more convenient class SeqAcqDeph which can be employed. It is de-

clared in line 12. After the obligatory label as the first argument to the constructor (line 63),
a reference to an object derived from SeqAcqInterface is expected for which the dephaser

will be created. As we have seen above, the object read is derived from SeqAcqInterface

and can therefore be used as the second argument so that a suitable pre-dephaser will be
created. The last argument spinEcho specifies that the pre-dephaser will have the same

polarity as the read gradient which is suitable for spin-echo (and, therefore, CPMG) acquisi-

tion.

1.4.4 Sequence Containers and Delays

Having initialized all our basic sequence elements, we now start to group them together to

build the whole MR sequence. For this purpose, sequence containers of type SeqObjList

are used: For example, we will group the objects within one refocusing interval together in
line 68and assign this composite object to echopart (declared in line 13) so that we can

loop over this part of the sequence later. As you can see, sequence objects are concate-
nated by using the + operator.

However, just concatenating objects is not enough for our FSE sequence, we must also

fulfill CPMG timing constraints. Therefore, the sequence delay echodelay of type SeqDelay

(declared in line 16and initialized in line 667) is used to insert certain waiting periods into

the sequence. We will calculate the duration of this delay later together with the duration of

other delay objects. For now, we just create the basic layout of the sequence.
It is also convenient to group the preparation phase into the object prep (line 14) as

shown in line 73. Here, the delay prepdelay (line 17, line 71) will be used to achieve CPMG
timing. Again, we use the + operator to concatenate sequence objects. But since spoiler

and deph are on different gradient channels, they can be played out simultaneously. This

is exactly what the / operator does: It makes sequence objects simultaneous, if possible.
Otherwise, it will generate an error message.

7Although setting the label is not crucial, it helps debugging as this label shows up in all visualizations of the
sequence.

1.5 (Re)Calculating Sequence Timings 8

1.4.5 Sequence Loops

Next, we will build the sequence part of one shot, that is, the preparation part prep followed

by a loop over echopart (the sequence part of one echo). In ODIN, loops are possible with

the class SeqObjLoop, which is, like SeqObjList, a container to hold other sequence objects
in sequential order. In the following, this contents will be called the kernel of the loop. In

addition, SeqObjLoop allows looping over the kernel to repeat its execution. At each iteration,

properties of so-called sequence vectors can be changed. These sequence vectors are all
classes derived from SeqVector. Thereby, a loop can be employed as follows: First, a loop

object is declared in line 19. Then, to iterate over a kernel kern while iterating properties of
vec1, vec2, ..., the basic syntax is8

echoloop (kern) [vec1][vec2]...

In our sequence, this syntax is used in line 78to iterate over echopart while iterating the
values of pe1 and pe2. Here iterating simply means to change the strength of the phase

encoding gradient so that different lines in k-space are scanned at each echo, according to
the encoding and reordering scheme specified above.

But we are not done yet because we have only build the sequence for one shot. Thus,

we need another loop shotloop (line 20) to iterate over the different shots. At each of these
iterations, pe1 and pe2 have to be aware that the next interleave of phase encoding steps

has to be used. For this purpose, each sequence vector has a reordering vector . Whenever

a certain reordering scheme is used (as done above by the constructor of SeqGradPhaseEnc
or by the function set reorder scheme), the reordering vector is used to iterate over the

set of modified arrangements of the values of the vector, for example over the interleaves,
if interleavedSegmented is used as the reordering scheme. The reordering vector, just

like every other vector, can be attached to a loop to iterate over it. It can be retrieved

from its parent vector by the function get reorder vector. This is done in lines 80-82:
The reordering vectors of pe1 and pe2 are attached to the loop shotloop while repeating

oneshot. A padding delay relaxdelay (line 18, line 76) is also added which we use later to

adjust the correct TR.
Within the same line, the function set sequence of the base class SeqMethod is used

to specify the whole sequence, i.e. to tell the ODIN framework what to use when plot-
ting/executing/simulating our sequence. Using this function is usually the last step in method_seq_init.

1.5 (Re)Calculating Sequence Timings

In the previous section, we have created the basic layout of the sequence, but ignored the
timing constraints of our FSE sequence. This will be done now, namely in the member func-

tion method_rels of our method class9. First, we will calculate the minimum TE possible

which is equivalent to the CPMG refocusing interval. This either limited by the minimum
duration possible with our preparation (lines 88-90), or by the refocusing interval (line 92).

Here, the functions get duration and get magnetic center return the duration of the cor-

responding sequence object10 and the time point of the center of the pulse relative to its
beginning, respectively. Next, we calculate the maximum of both in lines 94-95and set the

global TE (in commonars) to this value (line 97). Here, the second argument noedit indi-
cates that the parameter cannot be edited by the user, it will be indicated as such in the

GUI. Finally, we adjust the duration of the padding delays to match the calculated TE in line

98and line 99using the set duration function.

8This syntax becomes possible by overloading the () and [] operator of SeqObjLoop.
9Using a separate member function for timing calculations, which are usually fast compared to all the initialization

stuff in method seq init, has the advantage that, if only timing settings of the sequence change, method rels is
the only function to be called.

10The container echopart is a sequence object itself whereby get duration returns the total duration of the
concattenated objects it contains.

1.6 Image Reconstruction 9

A similar technique is used to set the minimum TR possible and adjust the corresponding

padding delay (lines 101-103).

1.6 Image Reconstruction

The sequence is now complete and could be executed on the scanner, but image recon-

struction would fail because ODIN does not know where to put each line, which was ac-
quired with the read object, in k-space . We have to inform ODIN explicitely that the vector

object pe1 was responsible for phase encoding. This is done in line 108. The first argu-

ment of set reco vector is of type recoDim which is an enum used to specify so-called
reconstruction dimensions. These can be, for instance:

• Phase encoding step (line)

• Slice index (slice)

• Echo number (echo)

• User-defined index (userdef)

The second argument is a vector object which was responsible to iterate through this dimen-

sion. For example, if we would add multi-slice excitation, we would add a frequency list to

exc (using set freqlist) and then use exc as the slice vector.
After execution of the sequence, the complex data of the acquired NMR signal is stored

on disk in the so-called scan directory (scandir) in the order it was acquired. This is achieved
by using the native mechanisms (e.g. on Bruker and GE) or by a custom reconstruction rou-

tine which does nothing but dumping the raw data to the hard drive (e.g. on Siemens).

However, just storing the raw data would not be enough to reconstruct an image. Extra in-
formation like the one above (location of each acquisition in k-space) is required. Therefore,

an extra file recoInfo, which contains this information in human-readable ASCII format, is

stored together with the raw data in the scandir. The file is a serialized version of the class
RecoPars, which means that on object of this type can read/write the file and queried sub-

sequently for its values.

Finally, the program odinreco, which is part of ODIN will retrieve all information from
recoInfo and generate image data. It is executed in the scandir on the command line with

odinreco

to create the reconstructed image data. Please refer to the online manual for further docu-

mentation how to fine tune the reconstruction.

Index

Geometry, 5
LDRint, 5

METHOD CLASS, 4
ODINMETHOD ENTRY POINT, 4

RecoPars, 9

STD string, 4
SeqAcqDeph, 7

SeqAcqInterface, 7

SeqAcqRead, 6
SeqAcq, 6

SeqDelay, 7
SeqGradConstPulse, 6

SeqGradInterface, 7

SeqGradPhaseEnc, 6
SeqGradTrapez, 6

SeqGradVector, 6

SeqMethod, 4
SeqObjList, 7

SeqObjLoop, 8
SeqPars, 5

SeqPulsarSinc, 5

SeqPulsar, 5
SeqVector, 8

System, 5

append parameter, 5
centerOutEncoding, 6

commonPars, 5

echo, 9
geometryInfo, 5

get acquisition start, 7
get duration, 8

get magnetic center, 8

get reorder vector, 8
interleavedSegmented, 6

line, 9

method pars init, 4
method pars set, 4

method rels, 4
method seq init, 4

noedit, 8

odinreco, 9
phaseDirection, 6

readDirection, 6

recoDim, 9
recoInfo, 9

refocusing, 6
set duration, 8

set freqlist, 9

set reco vector, 9

set reorder scheme, 8
set sequence, 8

sliceDirection, 6
slice, 9

systemInfo, 5

userdef, 9

Interface base classes, 7

interface classes, 7

kernel, 8

method, 4

parameter blocks, 5

polymorphism, 7
proxies, 5

reconstruction dimensions, 9
reordering scheme, 6

reordering vector, 8

sequence containers, 7
sequence delay, 7

sequence objects, 5

sequence parameters, 5
sequence vectors, 8

List of Abbreviations

TE: echo time, 5
TR: repetition time, 5

CPMG: Carr-Purcell-Meiboom-Gill, 5

FOV: field of view, 5
FSE: fast spin-echo, 2

GUI: graphical user interface, 5

MR: magnetic resonance, 2

OOP: object-oriented programming, 2

scandir: scan directory, 9

